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1 Introduction

Many computer vision problems can be posed as either parameter estimation problems
(for example, estimate the pose of an object) or hypothesis testing problems (for example,
which of N objects in a database occurs in a given image.) Since the input data (such as
images or feature points) is noisy, the estimates produced by computer vision algorithms
are noisy. In other words, there is an inherent uncertainty associated with the results
produced by any computer vision algorithm. These uncertainties are best expressed in
terms of statistical distributions and their means and covariances. Details of the theory
and application of covariance propagation can be found in [5, 8], and in the references
cited in [8].

Usually, implementations of vision algorithms involve thousands of lines of code. Fur-
thermore, the algorithms are often based on many approximations and mathematical
calculations. One way to check whether the implementation and the theoretical calcula-
tions are correct is by providing the algorithm with input data with known (controlled)
statistical characteristics (which is possible since the input data can be artificially gener-
ated) and then checking if the distribution of the output is in agreement with what was
predicted by theoretical calculations.

Since many of the estimation problems in computer vision are multidimensional,
testing whether the means and covariances of the empirical distribution and predicted
distribution are the same is easier than testing whether the shapes of the two distributions
are the same. In this paper, we summarize statistical tests for the case in which the
estimates can be assumed to be multivariate Gaussian. We also describe the interfaces
to software that we have implemented for conducting these tests. Although software
libraries and environments (e.g. Splus, numerical recipes) are available for conducting
such tests for one-dimensional samples, we are unaware of similar software libraries for
the multivariate case. In fact, most statistics books do not give all five of the tests we
give (e.g., Koch [12] does not address the fifth testing problem). The hypothesis testing
theory and software are described in [10], and the software can be obtained at no cost
from the Statlib software repository or from kanungo@cfar.umd.edu. A description of
how the software and the theory have been tested using statistical techniques is also
included. A preliminary version of this work was presented at the 1996 DARPA Image
Understanding Workshop [16].

2 Kinds of Statistical Hypotheses

Let x1,z9,..., 2, be a sample from a multivariate Gaussian distribution with population
mean g and population covariance ¥. That is, z; € R? and x; ~ N(p,Y), where p is the
dimension of the vectors z;.

We can formulate various hypotheses about the population mean and covariance,
depending on what is known and what is unknown. The data z; can then be used to
test whether a hypothesis is false. Notice that each population parameter (here we have
two, p and X) can be either tested, or unknown and untested, or known. If a parameter
is being tested, a claim about its value is being made. If a parameter is unknown and
untested, no claim is being made about its value; its value is not known and therefore we
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cannot use it in any computation. If the value of a parameter is assumed to be known,
then we assume that its value is known without error and cannot be questioned or tested,
just as the normality assumption is not questioned. Furthermore, when a parameter value
is known, that value can be used in computations of test statistics for other parameters.

In general, if a distribution has ¢ parameters, there can be 3¢ —27 tests. The reasoning
is as follows. Since each parameter can be either tested, or unknown and untested, or
known, the number of possibilities is 3?. But of these, the number of combinations in
which none of the parameters are tested (that is, they are either known, or unknown
and untested and so do not represent a test) is 2. Thus the total number of distinct
hypotheses that can be made about a sample from a g-parameter distribution is 3% — 27.

In the case when the data come from a multivariate normal distribution, N(u, ),
we have ¢ = 2 and thus can have 3? — 2? = 5 possible hypotheses. The five tests are as
follows:

Hi: p=ypo (¥=2%; known.) In this test, the question is whether or not the sample
is from a Gaussian population whose mean is pg. The population covariance ¥ is
assumed to be known and equal to X;.

Hy: p=po (¥ unknown, untested.) In this test, the question is whether or not the
sample is from a Gaussian population whose mean is pg. No statement is made
regarding the population covariance ¥.

Hs: ¥ =%y (¢ = p1 known.) In this test, the question is whether or not the sample
is from a Gaussian population whose covariance is ¥y. The population mean p is
assumed to be known and equal to p;.

Hy: ¥ =%, (¢ unknown, untested.) In this test, the question is whether or not the
sample is from a Gaussian population whose covariance is 4. No statement is made
regarding the mean p.

Hs: p=po ¥ =239 In this test, the question is whether or not the sample is from a
Gaussian population whose mean is pg and whose covariance is g. This is the
principal test we use for software validation.

3 Definitions

In this section we briefly define the terms used in the rest of the paper. A reader
who is familiar with statistics can skip this section. For a lucid explanation of the
basic univariate concepts see [4]. A slightly more rigorous treatment of univariate and
multivariate tests is given in [2]. Multivariate tests are treated in great detail in [12].
The most authoritative reference on multivariate statistics is [1]. Although this book has
most of the results given here, it is not easy to read, and the results are not easy to find
in it.

A statistic of the data x1,...,x, is any function of the data. For example, the sample
mean z is a statistic, and so is the sample covariance matrix S. The statistic need not
be one-dimensional; (z,5)" together are another statistic of the same data. A sufficient
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statistic is a statistic that contains all the information about the data; any inference
regarding the underlying population can be made using just the sufficient statistic, and
the individual data points do not add any more information to the inference process.
For example, the vector of original data (zi,...,z,)" is a sufficient statistic; it contains
all the information about the data. Another sufficient statistic is (z,5)". A sufficient
statistic is not unique. A minimal sufficient statistic is a sufficient statistic that has a
smallest number of entries. For example, for Gaussian data, (z,.5) is a minimal sufficient
statistic.

A hypothesis is any statement about a population parameter that is either true or
false. The null hypothesis Hy and the alternate hypothesis H 4 are the two complementary
hypotheses in a statistical hypotheses testing problem.

A test statistic is a statistic of the data that is used for testing a hypothesis. The null
distribution is the distribution of the test statistic when the null hypothesis is true. The
alternate distribution is the distribution of the test statistic when the alternate hypothesis
is true.

There are two types of errors — mis-detection and false alarm. If the null hypothesis
is true but the test procedure decides it is false, this is called a misdetection. When the
alternate hypothesis is true but the test procedure accepts the null hypothesis, this is
called a false alarm. The misdetection probability of a test procedure is usually fixed by
the user; this is referred to as the significance level, «, of the test. A typical value for «
is 0.05.

The power function of a hypothesis test is a function of the population parameter
6; its value, 3(8), is equal to 1 minus the probability of false alarm. Ideally, the power
function should be 0 for all # such that the null hypothesis is true, and 1 for all § such that
the alternate hypothesis is true. For most realistic testing problems one cannot create
a test procedure with such an ideal power function. Power functions are very useful for
evaluating hypothesis testing procedures. For an example in which they are used for
computer vision problems see [11]. A uniformly most powerful lest is a test procedure
whose power function is higher than those of all other tests.

There are many methods of creating tests and corresponding test statistics. The
test statistics given in this paper were derived by maximizing the likelihood ratio. The
derivation of these statistics can be found in the cited literature.

4 Test statistics

In this section we summarize various test statistics and their distributions under the true
null hypothesis For details see Anderson [1] and Kanungo and Haralick [10]. These tests
will be used later in our discussion. We use the following definitions of z and 5 :

I I
r = — Z;
2=

=1

and




where we have assumed that the data vectors z; are p-dimensional and the sample size
is n.
4.1 Test 1: p = puo with known ¥ = ¥,

Test statistic:
T'=n(T — po)'¥7" (T — po). (1)
Its distribution under the null hypothesis is Chi-squared:

TNX;.

The alternate hypothesis is H4 : u # po; the distribution of the test statistic under the
alternate hypothesis is non-central Chi-squared:

2
T ~ Xp,d

where d = n(p — 110)'S7" (1 — po) is the non-centrality parameter.

4.2 Test 2: p = pup with unknown X

Hotelling’s Test statistic:

n(n—p) _ to—1(
= — S — 1g). 2
BB )57 e ) 2
Its distribution under the null hypothesis is F":
T ~ F,

pyn—p-
The alternate hypothesis is H4 : u # po; the distribution of the test statistic under the
alternate hypothesis is non-central F"

T ~ Fp7n_p7d

where d = n(p — 1o)'S 7 (¢ — po) is the non-centrality parameter.

4.3 Test 3: ¥ = ¥y with known u = 4
Let

n

C=) (v —m)(wi —m) = (n = 1)S+ (z — )z — )" .

=1
and
A= (e/n) 2 ICSGM exp(—tr(CE5")/2) .
The test statistic is
T = —2log \. (3)

Its distribution under the null hypothesis is Chi-squared:

2
T~ Xp(pt1)/2°

The alternate hypothesis is Hy : ¥ # Xg; the distribution of the test statistic under the
alternate hypothesis is unknown.



4.4 Test 4: ¥ = ¥y with unknown p
Let B = (n—1)S,and A = (e/(n — 1))P(=0/2| BY51("=D/2 exp(—ir(BY5")/2) The test

statistic 1s

T = —2log . (4)
Its distribution under the true hypothesis is Chi-squared:

2
T~ Xp(pt1) /2

The alternate hypothesis is Hy : ¥ # Xg; the distribution of the test statistic under the
alternate hypothesis is unknown.

4.5 Test 5: ¥ =%, and p = po
Define B = (n —1)S and

N = (efmyn sy
exp (= [tr(BEg") + n(z — 110)' S5 (2 — 10))/2)
The test statistic is
T =—2log A (5)
Its distribution under the null hypothesis is Chi-squared:

2
T~ Xp(p1) /240

The alternate hypothesis is Hq : ¥ # g, and p # po; the distribution of the test statistic
under the alternate hypothesis is unknown.

5 Validating theory and software

To validate computer vision software two checks have to be performed. The first check is
that the theory is correct: the theoretically derived null distributions of the test statistics
are actually correct. The second check is that the software is correct: the implementa-
tion is exactly what the theory dictates. Both of these checks can be done by computing
the empirical distributions and comparing them with the theoretically derived distribu-
tions. In the next subsection we describe how we empirically compute the null distri-
butions of the five test statistics, and in the following section we describe how we use
the Kolmogorov-Smirnov test to check if the empirical distribution and the theoretically-
derived distributions are the same.

5.1 Empirical null distributions

In order to generate the empirical null distributions we proceed as follows.

1. Choose some values for the multivariate Gaussian population parameters p, p and

Y.



2. Generate n samples from the population.
3. Compute the value of the statistic 7' for the test that is being verified.
4. Repeat steps 2 and 3 M times to get T;, : = 1,..., M.

5. The empirical distribution 7' can be computed by computing the histogram of 7;.

5.2 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test tests whether two distributions are alike. The KS
test uses the fact that the maximum absolute difference between the empirical cumulative
distribution (the KS test statistic) and the theoretical cumulative distribution has a
known distribution (the null distribution). For a more detailed discussion of the KS test

see [17].

6 Application: 3D Parameter Estimation

We applied our hypothesis testing methodology to validate the 3D parameter estima-
tion software that was used for constructing the ground truth model from the RADIUS
model board data set [18]. In this section we describe the problem and the optimization
approach.

6.1 Site Model Construction

The task is to construct 3D object models from detected 2D image features and the
known geometric constraints on the observed perspective projections of the 3D objects.
The data set [18] consists of 78 images of the two RADIUS model boards and the 3D
coordinates of some building vertices. Since the purpose was to establish ground truth for
automatic site model construction algorithms, the corresponding points of the building
vertices that were observable on the images were identified and located manually. Also,
the 3D positions of a few of the building vertices are known. Simultaneous estimation
of the interior parameters and exterior orientation parameters of the cameras was done
by setting up and solving a very large photogrammetric resection problem. Then, using
these camera parameters, multi-image triangulation was performed. This yielded noisy
estimates for the building vertices; these estimates were the input to the site model
construction software whose testing we now describe.

The geometric constraint procedure takes the photogrammetrically estimated 3D
point positions and their covariance matrices as observations. It uses the partial models
of the buildings to generate constraints on the building parameters. To estimate the
optimal 3D parameters that satisfy the relations in the partial models, a constrained op-
timization model is solved. By error propagation we derive the covariance matrix of the
estimated building vertices, which are now guaranteed to satisfy the given constraints.
This is discussed in greater detail in [15].



6.2 Constrained Optimization

Partial building models are used to constrain the 3-I) parameters to be estimated. Par-
tial models represent geometric constraints between building entities: lines, planes and
vertices. The specific relations we used to constrain the parameters were: point-on-
plane, point-on-line, plane-angle-plane, line-angle-line, and plane-angle-line. For a more
detailed description see [13].

The observed 3D points and the associated covariance matrix ¥ are obtained by
triangulation. The perturbation model that we used for the observations was zero-mean
Gaussian noise with unknown covariance. Having the partial object model and the
perturbation model, we can define the estimation problem. Let © € IR™ denote the
parameters, X’ € IR™ the observations, and p(X’ | ©) the likelihood function. In the
building estimation problem, the parameters are the coordinates of the points, the normal
vectors and distance constants of the planes, and the direction cosines and reference points
of the lines.

Assuming that the optimality criterion is the maximum posterior probability, a Bayesian
approach can be used to transform the problem into a maximum likelihood problem with
constraints. Let the constraints be denoted by ©® € Cg C IR™. This problem can be
expressed as a constrained optimization problem.

min {—p(X" [ ©) | O € Co}

The problem can be reformulated by taking the logarithm of the probability function.
Under the assumption of Gaussian noise, we obtain a least squares model. The objective
function is the sum of squared errors between the estimated point positions and the
observed points.

min {£(®) = (X' - X)"s7 (X' - X)} (6)
subject to © € Co

where X denotes the unknown 3D points, and the feasible set Cg is determined by the
partial model and the unit length constraint on the directional vectors.
If the noise affecting different 3D points is independent, the objective function can be

rewritten as
K

f(0) = (i — i) 87 (x) — xi)

=1
where ¥; is the covariance matrix of the ¢th point and K is the number of observed
points.
The constraints can be incorporated into the optimization problem as follows (see

[13]):
min {£(®) = (X' - X)"s7(X' - X)} (7)
subject to hi(©) =0, r=1,...,r
In the above, the equation h;(®) = 0 represents all the constraints derived from the
partial models. The numerical solution to this optimization problem can be achieved

by various methods such as: the reduced gradient method [7], sequential quadratic pro-
gramming [6], or the augmented Lagrangian method [3].
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7 Error Propagation

Once the constrained optimization produces a result, we use the error propagation ap-
proach [9] [14] to transform the input error covariance matrix to the output covariance
matrix. In the building estimation problem, we have the optimization model

min  f(©)
subject to  h(©) =10

where f is the sum of squared errors between the estimated 3D points and the observed
3D points.
The Lagrangian function is

L(X',0,A) = f(X',0)+ ATh(©)

Suppose ()N(, 0, }x) is an optimal point. From the necessary conditions on a local minimum
point, the linearized model at the optimal point can be obtained [13, 6] by solving

(80 )(30)- (%) g

The Lagrangian matrix at the point of ()N(, 0, A) can be approximated by the Lagrangian
matrix at the minimum if the error is small. Hence the linear model can be approximated

by
(e M) (R0) - (%)

where

Q" = V4L(X',0,A)

J
B* = V2L(X',0,A) = Vi f(X'0)
H* = Vh(0)

Assume that the constraints are linearly independent. Then the row vectors in matrix
H* are linearly independent. We can use the null space method to compute the error
propagation matrix .J [6] [13].

Once the error propagation matrix is obtained, we can propagate the covariance
matrix of the observations ¥ to the output. The covariance matrix of the estimated
parameters Yo can be approximated by

Yo = JUJT (9)



8 Experimental Methodology

To validate the optimization algorithm and the error propagation model, an experiment
is needed. This section describes the experimental methodology for this validation.

8.1 Ideal Data Generators and Noise Model

Three building types, the cube box, the peak roof house, and the hip roof house, appear
frequently in the given sites. The peak roof house model assumes a slanted roof on a cube.
The hip roof house model assumes a roof with slanted sides and ends. For a more detailed
description of the models and corresponding constraints see [13]. They are chosen as our
prototype models with unknown length, location and orientation parameters.

In our experiment, ideal data generators randomly generate the ideal parameters for
the prototype models and produce ideal 3D points.

Assume that a 3D coordinate system z-y-z is used. To simulate the site model
situation, the ground is assigned as the plane z = 0. Without losing generality we
assume that the ideal model parameters that determine the 3D positions of the building
vertices have uniform distributions. The center of the bottom plane of a basic model is
in a region defined by [—z¢, %0), [—Y0,Y0), [—%0, 20). The basic model is rotated on the
ground by a random angle ¢ € [¢g, ¢1).

The three length parameters for the cube box model are denoted by a,b, ¢, with
ag < a < a;,bp < b < by, and ¢ < ¢ < ¢;. In our experiment the ranges of the
parameters for this model were set as follows:

To Yo <o ¢’0 ¢1 apg a1 by b o

50 30 0 0 27 30 60 30 60 30 60

The peak roof model uses four length parameters, a, b, ¢, d, where a, b, ¢ are the same
as those in cube model and their ranges are the same. The height of the peak roof is
defined by a parameter d, with 10 < d < 20. The hip roof model requires one more
parameter e; the length of the roof edge is a — 2e, with 5 < e < 10.

For each building type, K ideal buildings are randomly generated. Each of these
K buildings will be used in n experiments in which Gaussian random noise is added
to each of the 3D coordinates of the building and constrained optimization is used to
estimate the building vertices that satisfy the geometric constraints. As a result of
these n experiments, n estimates of the building parameters are produced. It is these n
estimates on which the hypothesis test statistics will be computed. We call the procedure
for determining these n test statistics a trial. Since there are K ideal buildings for each
ideal building type, we can compute K test statistics. These K statistics can then be
used to test the hypothesis that their distribution is what the statistical theory of the
test says it should be.

The noise values are independently sampled from a Gaussian distribution A(0,*1),
where o is the standard deviation of the random variables éx, 0y, 6z. We repeated each
experiment with o set to 1.0, 2.0 or 3.0. The validation results for all three different
standard deviations are similar, so here we discuss only the validation for the case where



the standard deviation is equal to 3.0. K is set at 100. n is set at 500 for cube model
and 700 for other models.

8.2 Statistical Test

In each trial a sample of model parameters and corresponding ideal 3D points s produced
by the ideal data generator. Let the ideal parameters be denoted by ©. For each ideal
building instance having parameters O, n independent perturbations {AX;, 1 =1,...,n}
are generated from the noise model with distribution A(0,%). By adding the pertur-
bations to the ideal points, the perturbed data set {Xj, X}, ..., X!} is generated. For
each of the perturbed data sets { X7, X,..., X/}, an optimal solution 0, is computed by
solving

Héi‘n f(X1,0,) 1=1,....n

subject to  h(0;) =0

Thus we have n estimates {(:)“ i=1,...,n}.

Using equation (9), we can transform the input covariance matrix through the error
propagation matrix to the output. If the linear model is valid, the estimated parameters
{@ i = 1,...,n} should be approximately distributed as N(@ JJT).

Let A(:) denote @ @ i=1,....,n. Let up = 0 and ¥y = JEJT. Under the linearized
model, {A(:)Z», 1 =1, ,n} have dlstrlbutlon N (po,X0). Considering {A@Z», i=1,...,n}
as a random sample from a Gaussian distribution N (g, X), we can perform any one of
the five hypothesis tests. Here we just discuss our results for hypothesis Hs: p = po and
Y = Yy. The results for the other hypothesis tests are similar.

The significance level « is selected to be 0.05. Under the null hypothesis, the computed
statistics of the mean and covariance tests have the null distributions. This can be verified
by using a Kolmogorov-Smirnov test (K-S test) on the K test statistics generated from
the K trials.

8.3 Range Space Analysis

The standard hypothesis test methods require that the covariance matrix be positive
definite. However, because of the constraints, the output covariance of a constrained
optimization is generally positive semi-definite.

Theorem 1 Suppose that not all of the derivatives of the constraint equations are equal
to zero at the local minimum point, then the propagated error covariance JX.J7 is singular.

Proof : From the given condition we know that the derivative matrix H is not a zero

matrix, i.e.,
dhy
90

H=| | #0

Ohy
20
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Left multiply equation A® = JAX by H :
HAO® = HJAX

Because both (X, 0% A*) and (X + AX,0* + A, A* + AA) are local minimum points of

the optimization, the following equation is satisfied,
HAO = 0.

Hence

0=HJAX
Since the formula holds for any A X, this implies that

0=HJ (10)

We now use this result to prove that JX.J7 is singular. Left multiply JXJT by H and
right multiply it by HT. From (10) we have

HISJTHT = 0%0

Since H is not a zero matrix, JY.JT must be singular. 0
To utilize standard hypothesis technology, we project a positive semi-definite matrix
onto its range space. Suppose that an n X n covariance matrix ¥ has k£ nonzero eigen-
values wy, ..., w; and associated unit eigenvectors vy, ...,v;. A basis of the range space of
Yo can be defined by
B =(v1,...,v,)

Use B to perform a matrix transformation as follows:

w1 0 .

0 Wo 0
BTY 0B =Yg =

0 . .. W

Let Bt be a basis matrix of the null space of matrix ¥o. It is obvious that (B, B*)
is orthonormal. In our experiment, we check whether (B+)TA®© has very small vari-
ances (caused by round-off errors and nonlinear terms). If this is true, we conduct the
hypothesis test on variables BT A® with covariance matrix Yg.

Due to the round-off errors and nonlinear terms, the zero eigenvalues of matrix g
may not be exactly zero. We use a small threshold to distinguish the zero eigenvalues
from the nonzero eigenvalues. In all our experiments the threshold was set to 107¢ times
the maximum eigenvalue.

For the cube model, the range space of the output error covariance matrix has 7
dimensions. This can be understood as follows. Consider a cube house whose faces are
all at right angles to each other. Count the number of degrees of freedom. The size of
a cube model is defined by three independent parameters. The location of the model is
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specified by three translation parameters in 3D space. In our experiments, the normal
vector of the cube roof is fixed in the vertical direction. The only possible rotation is
around the vertical axis of the model. Thus the total number of independent parameters
is seven. For the peak roof model the analysis is similar, except that two more parameters
are needed to determine the roof height and the ridge position. (In the partial model
we do not fix the horizontal position of the roof ridge to the center of the building.)
Thus the range space of the output covariance matrix for the peak roof model has nine
dimensions. The hip roof model inherits all the parameters of the peak roof model. It
requires two more parameters to determine how much of the ridge was cut of at each of
the two ends (they are assumed to be independent). These parameters can be thought
of as the relative starting and ending points of the the ridge. Thus the range space of
the output covariance matrix for the hip roof model has 11 dimensions.

9 Experimental Results

In this section we present our experimental results on the cube model, the peak roof
model and the hip roof model. An example of the model estimation results is shown in
Figure 4.

9.1 Test of Cube Model with ¢ = 3.0

The theoretical and empirical null distributions of the five test statistics for the cube
model are shown in Figure 1. The standard deviation used was ¢ = 3.0. The x axis is
the statistic used in the test and the y axis represents 1 — «, where « is the significance
level.

The experimental trials were run multiple times; each time, the null hypothesis was
either rejected or not rejected. The results are summarized in Table 1(a). The null
hypothesis is not rejected at a 0.05 significance level.

The K-S test was used to test whether the empirical and theoretical distributions are
similar. For this test the number of degrees of freedom, p, is 7. The results are shown in
Table 2(b). None of the five test statistic distributions failed the K-S test at a significance
level of 0.05. Thus the optimization model and the error propagation model for the cube
model were validated.

9.2 Test of Peak Roof Model with o = 3.0

The theoretical and empirical null distribution of the five test statistics for the peak roof
model are shown in Figure 2. The standard deviation used was ¢ = 3.0. The z axis is
the statistic used in the test and the y axis represents 1 — «, where « is the significance
level.

The experimental trials were run multiple times; each time, the null hypothesis was
either rejected or not rejected. The results are summarized in Table 2(a). The null
hypothesis is not rejected at a 0.05 significance level.

The K-S test was used to test whether the empirical and theoretical null distributions
are similar. For this test the number of degrees of freedom, p, is 9. The results are
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Figure 1: Null distributions of the five test statistics for the cube model at o = 3. (a)
Test mean with known covariance. (b) Test mean with unknown covariance. (c) Test
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Table 1: Cube model.

(a) Test Statistic Values for the Five Tests

test method number of trials | sample size | significance level | reject rate
test p, known X 100 500 0.05 0.06
test p, unknown X 100 500 0.05 0.05
test X, known p 100 500 0.05 0.07
test X, unknown p 100 500 0.05 0.06
test p and ¥ 100 500 0.05 0.05
(b) Kolmogorov-Smirnov Distribution Test

test method null distribution | size n | p-value | K-S test

test p, known ¥ X; 100 0.391 pass

test p, unk. X Fynp 100 0.217 pass

test X, known g Xo(pt1)/2 100 | 0.866 pass

test X, unk. p X?)(p+1)/2 100 0.881 pass

test p and % Xo(pi1)/240 100 0.700 pass

shown in Table 2(b). None of the five test statistic distributions failed the K-S test at a
significance level of 0.05. Thus the optimization model and the error propagation model
for the peak roof model were validated.

9.3 Test of Hip Roof Model with ¢ = 3.0

The theoretical and empirical null distributions of the five test statistics for the hip roof
model are shown in Figure 3. The standard deviation used was ¢ = 3.0. The x axis is
the statistic used in the test and the y axis represents 1 — «, where « is the significance
level.

The experimental trials were run multiple times; each time, the null hypothesis was
either rejected or not rejected. The results are summarized in Table 3(a). The null
hypothesis was not rejected at a 0.05 significance level.

The K-S test was used to test whether the empirical and theoretical null distributions
are similar. For this test the number of degrees of freedom, p, is 11. The results are
shown in Table 3(b). None of the five test statistic distributions failed the K-S test at a
significance level of 0.05. Thus the optimization model and the error propagation model
for the hip roof model were validated.

10 Summary

We have described a statistical methodology for validating the theoretical derivations and
software that make up a system for estimating 3D positions of building vertices, based
on input data obtained from multi-image photogrammetric resection calculations. Error
propagation allowed us to derive the null distributions of various test statistics of mea-
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Figure 2: Null distributions of the five test statistics for the peak roof model at ¢ = 3.
(a) Test mean with known covariance. (b) Test mean with unknown covariance. (c) Test

covariance with known mean. (d) Test covariance with unknown mean. (e) Test mean

and covariance.
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Figure 3: Null distributions of the five test statistics for the hip roof model at o = 3. (a)
Test mean with known covariance. (b) Test mean with unknown covariance. (c) Test
covariance with known mean. (d) Test covariance with unknown mean. (e) Test mean
and covariance.
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Figure 4: This figure shows the estimated houses overlaid on top of the original model-
board image.
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Table 2: Peak roof model results.

(a) Test Statistic Values for the Five Tests

test method number of trials | sample size | significance level | reject rate
test p, known X 100 700 0.05 0.03
test p, unk. ¥ 100 700 0.05 0.03
test ¥, known p 100 700 0.05 0.04
test ¥, unk. p 100 700 0.05 0.04
test p and ¥ 100 700 0.05 0.02
(b) Kolmogorov-Smirnov Distribution Test
test method null distribution | size n | p-value | K-S test

test y, known ¥ X; 100 | 0.464509 pass

test y, unknown ¥ Fonp 100 | 0.277997 pass

test X, known pu Xo(pt1)/2 100 | 0.450701 pass

test X, unknown g X?)(p+1)/2 100 | 0.402053 pass

test p and ¥ Xo(pt1)/24p 100 | 0.205762 pass

surable quantities. These theoretically derived null distributions allowed us to validate
whether the measurements in the system followed the theoretically derived distributions.
Kolmogorov-Smirnov tests were performed to check whether the empirical and theoreti-
cal distributions were close enough. None of the empirically computed null distributions
failed the KS test. Thus we have confirmed that the theoretical derivations of the null
distributions were correct and that the software implementing the theory is also correct.
The software for performing the statistical tests has been made publicly available.
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